Category Archives: Comfort

Millennials Seek Smaller Homes, Energy Efficiency, Won’t Sacrifice Details

Originally Published on the NAHB Website
http://nahbnow.com/wp-content/uploads/2015/01/507029289.jpg

Laundry Room

The survey says: No laundry room = no sale.

 

As Millennials begin to enter the home buying market in larger numbers, homes will get a little smaller, laundry rooms will be essential, and home technology increasingly prevalent, said panelists during an International Builders’ Show press conference on home trends and Millennials’ home preferences last week.

NAHB Assistant VP of Research Rose Quint predicted that the growing numbers of first-time buyers will drive down home size in 2015. Three million new jobs were created in 2014, 700,000 more than the previous year “and the most since 1999,” Quint said. At the same time, regulators have reduced downpayment requirements for first-time buyers from 5% to 3% and home prices have seen only moderate growth.

“All these events lead me to believe that more people will come into the market, and as younger, first-time buyers, they will demand smaller, more affordable homes,” Quint said. “Builders will build whatever demand calls out for.”

Quint also unveiled the results of two surveys: one asking home builders what features they are most likely to include in a typical new home this year, and one asking Millennials what features are most likely to affect their home buying decisions.

Of the Top 10 features mentioned by home builders, four have to do with energy efficiency: Low-E windows, Energy Star-rated appliances and windows and programmable thermostats. The top features: master bedroom walk-in closets and a separate laundry room.

Least likely features include high-end outdoor kitchens with plumbing and appliances and two-story foyers and family rooms. “Consumers don’t like them anymore, so builders aren’t going to build them,” Quint said.

When NAHB asked Millennials what features fill their “most-wanted” shopping list, a separate laundry room was clearly on top, with 55% responding that they just wouldn’t buy a new home that didn’t have one.

Storage is also important, with linen closets, a walk-in pantry and garage storage making the Top 10 – along with Energy Star certifications. In fact, this group is willing to pay 2-3% more for energy efficiency as long as they can see a return on their power bills.

If they can’t quite afford that first home, respondents said they’d be happy to sacrifice extra finished space or drive a little farther to work, shops and schools, but are unwilling to compromise with less expensive materials.

A whopping 75% of this generation wants to live in single-family homes, and 66% prefer to live in the suburbs. Only 10% say they want to stay in the central city. Compared to older generations, Millennials are more likely to want to live downtown, but it’s still a small minority share, Quint said.

Panelist Jill Waage, editorial director for home content at Better Homes and Gardens, discussed Millennials’ emphasis on the importance of outdoor living and that generation’s seamless use of technology, and how those two trends play into their home buying and home renovation decisions.

Because they generally don’t have as much ready cash or free time as older home owners, Millennials seek less expensive, low-maintenance choices like a brightly painted front door, strings of garden lights and landscaping that needs less watering and mowing, like succulent plants and larger patios.

They’re also very comfortable with their smartphones and tablets, and increasingly seek ways to control their heating and air-conditioning and security and lighting as well as electronics like televisions and sound systems from their phones. “They want to use their brains for other things, not for remembering whether they adjusted the heat or closed the garage door,” Waage said.

Get more details about the NAHB survey in this post from Eye on the Economy.

I emphasized the two comments about Energy Efficient Features NAHB found.  If you would like help in addressing these in a cost effective manner for your buyers, Call The Energy Guy!

Indoor Air Quality Evaluations

The quality of the Indoor Air of our homes and offices is an important part of our health and comfort.

There is not much sense in putting a lot of good insulation into a building if it is:

  • Not Structurally Sound
  • Not Healthy

What types of things can be done to improve the Indoor Air Quality of any home or property?

  1. The immediate environment of the structure must be kept separate from the inside.
  2. The required fresh air that is needed, in every one of our buildings, should be filtered and otherwise treated for comfort and to remove pollutants.
  3. The pollutants that are created during the normal operation of our building must be eliminated, removed, replaced, diluted or neutralized.
  4. Moisture in any form must be controlled , and then removed avoiding any accumulation.
  5. Any and all accumulations of moisture damage or animal infestation must be cleaned up and damaged building components replaced.
  • A Full Indoor Air Quality evaluation must address all of those concerns.
  • Full interior visual inspection
  • Full exterior visual inspection
  • Testing of the building enclosure to ensure the outside stays outside
    • Infrared Evaluation as part of the above testing
  • Inspection of HVAC Duct Work and systems that move air.
  • Combustion Safety Inspection on open combustion appliances
    • Moisture, Carbon Monoxide, N02, SO2 and others
  • Infrared and other testing for moisture accumulations.
  • Sample Collection of suspended and/or deposited material that are potential pollutants or irritants.
    • Examination and Evaluation by a certified Microbiological Laboratory of these samples.

This evaluation is typically completed in two visits to the home or business. Level I Evaluation and Testing is non-destructive and not invasive.

Level II Evaluation and Testing involves invasive inspections. These may be as simple as drilling a few holes for visual inspection or sampling. It may involve removing obviously damaged building material, that requires replacement, for example wet drywall.

Contact The Energy Guy for further information about an Indoor Air Quality Evaluation.

The Energy Guy Gets a New Ride …

EG 4

 

OK!  Why a new car?  200K miles on the old one maybe?  Then being able to carry most if not all the equipment I need in one trip?  A moving billboard?

Yes to all of those!  So I had a Party.  Our Derby Chamber of Commerce hosts a Business to Business time once a month from 8 – 9.  Coffee and stuff that is guaranteed to add to my waist line.  They do a Ribbon Cutting when you join.  So I had mine this morning.  Here is the crew that came out for the Ribbon Cutting.EG 5Look closely, those are wooden scissors. Ceremony! So here is the next one with real scissors.EG 2Lots of wonderful people here.  Did they all come for my Ribbon Cutting?  I’d like to think so. This month the sponsor was Nova Care of Derby.

I’d like to thank the Derby Chamber, Mark and his staff Tim and Lindsi for helping out with this party.  I’d also like to thank my Ang’s  –  I had two guests today from Wichita.  Angie Tejeda and Angee MacMurray.  I posted a blog post a few weeks ago about a Twitter Conversation with Angee, take the link. I wrote about Igloo’s and my future plans.  No, I’m not building an Igloo.

Jen and Rick Brown showed up also.  I teach Sunday School with them. Thank You, Jen for the fine photography here.  And Thank You to everyone that came out to my party.  I must also acknowledge the the great folks at Mighty Wraps in Wichita.  Justin and Lori were great to work with during the design and application of the wrap.

If you see my ride around town – please Wave!

Who Is Building an Igloo in Wichita?

It all started on Twitter. @AIAWichita @moongodess316 and I had some fun over building an Igloo.

Igloo1

I saw this Tweet and immediately thought of a quote from Dr. Joseph Lstiburek: “The Igloo was the First Passive House.” Joe is an engineer by training and has been working with buildings, insulation and energy use for over 30 years. His Building Science Corporation, based in Massachusetts, conducts research and is one of the best sources of verified information on building energy efficiency in buildings.

So I tweeted back.

Igloo2

What is the difference between a Passive House and a regular house? What is the buzz all about?

Strawbale

When you build a home you can use lots of insulation to reduce the amount of electricity and gas to heat and cool the home.

GSHP Diagram

You can use a lot of high tech equipment to reduce the amount of electricity and gas to heat and cool the home. You can also do both.

PHIUSThe Passive House was developed in Germany, so you see it referred to at times as Passiv Haus.

We know that insulation works and that more insulation works better. As the cost of electric and gas goes up, it makes financial sense to add insulation to a home or business. In 2000, the local cost of Electricity was 8 – 9 cents, the recommended level of attic insulation was R-30. Today the cost of electricity is 12 – 13 cents and the recommended level of insulation is R-49.  Both have increased about 1/3 in 1 years. We also know that air movement, cold drafts, makes people uncomfortable and causes insulation to not work as effectively.

Round Metal TubeThe sources of air entering a home are usually related to corners. Since we like living in buildings that have square corners there are a lot of them in a home. Windows do not usually cause air leakage. How they are installed can cause air leakage. The age or the quality of the window does not seem to matter when installation mistakes occur.

PHIThe primary requirements for a passive ouse certification are based on Energy Usage and creating a structure that needs very little energy for heating and cooling. These standards are effectively summarized with these two limits.

  • Total primary energy (source energy for electricity, etc.) consumption (primary energy for heating, hot water and electricity) must not be more than 120 kWh/m² per year (37900 btu/ft² per year)
  • The building must not leak more air than 0.6 times the house volume per hour (n50 ≤ 0.6 / hour) at 50 Pa (N/m²) as tested by a blower door.

In our Twitter Conversation, Angee McBustee tweeted a question about how is building a igloo in Wichita. Then I responded with the offer to run the blower door test. As you can see from the primary requirements the Blower Door result is very important to a passive house.

Igloo4

How good is a Blower Door Test of 0.6, as required by Passive House? Energy Star New Homes require a Blower Door Test of 5.0 or less. New homes in Wichita routinely test around 4.0. In the blower door testing, lower is better.

For standard construction, I have tested several homes at 1.0. There is one home that I have tested with a lower result. A custom home in Butler County is under construction. They had me do a Blower Door test after it was sheathed. No insulation, no drywall. The test result was 0.62. We were able to find several leaks using biometrics and the infrared camera. That was last September. I returned in December to test it a 2nd time, the results were so low, that I didn’t have the right test equipment to measure the result. I would estimate it to be in the 0.30 range. I now have the equipment to test a home like that.

In February, I have been accepted for training and certification as a Passive House Rater/Verifier. Christine is building the home in Butler County, I want to thank her for the push to obtain this certification.

In the Twitter Conversation, AIA Wichita came back and said they were posting an information tweet.

Thanks to Angee and AIA Wichita for a nice idea for a Blog Post.

What Counts? Product A or Product B

Blower Door Testing & Weather Resistant Barrier

Tyvek TopThe practice of covering sheathing with asphalt impregnated papers has given way to the use of synthetic fabrics, known as house wrap; or spray on coatings. There are factory applied coatings on some brands of sheathing and some types of coatings are field applied. Along with the discussions of fiberglass / cellulose in the insulating of homes, there has been plenty of discussion about the merits of one form or another of WRBs.

As with any step in the building process, I believe it is less about the product and more about the people. Products that are hard to install will be less successful then others. Installers that are not properly trained; work that is not verified in some manner can defeat the proper performance of the best products.

WRBWhat does the WRB do for a home. First it provides a drainage plane behind the siding to divert rain and other weather related moisture from wetting the sheathing. Second, when all manufacturers install instructions are followed it can act as an air barrier, reducing infiltration. For the house wrap type fabrics, this means properly lapped, using capped fasteners, and then taped. Finding house wrap installed according to manufacturer’s install directions is rare.

When all three of these directions are not followed, not only are the potential qualities of an air barrier not present, the potential for water to run behind an uncapped fastener, or an incorrectly lapped joint, which is also untaped. Repeated wetting of the sheathing over time, will eventually result in rot and the accompanying problems.

Country HollowA local Wichita Home Builder, G.J. Gardner has just finished two homes based on the same floor plan. These homes went through the independent verification process involved in obtaining a HERS Rating. These homes utilized the same sub-contractors and types of insulation. The only difference in construction was the use of a job site applied spray on WRB, in place of a house wrap type fabric.

One part of this verification process is a Blower Door Test. This test simulates the effects of a 20 mph wind on all sides of the home at the same time. Blower Door testing has been completed on homes since the late 1970’s. Energy efficiency programs and building codes have consistently recognized the value of a Blower Door test on each home.

BlowerDoorThe value of doing a Blower Door test on each home is primarily to check the work of all subs has not compromised the Builder’s plan for an energy efficient home. Many existing homes, have a test rate of 7 – 12 or higher rates of air exchange during the test. The 2012 code requirement is 3 on this scale, and lower is better.

The use of 4×8 sheet goods for sheathing and other simple, and inexpensive techniques have brought the infiltration rates down. This reduces the cases of cold drafty homes, and significantly lowering the energy use of a home.

The Blower Door test can verify the quality of work involved with installing the WRB, specifically the degree of sealing of the outside of the sheathing. In the case of the two homes involved in this comparison, there was a change of 20% in the measured infiltration rates of the two homes.

In completing the Blower Door tests, we used the ANSI / RESNET published standard of a Multi-point test. These results were entered into a software package provided by the maker of the blower door, The Energy Conservatory, Below is a comparison screen between the two Blower Door Tests.

Tectite 2 Bldg Comp Data

I would like to thank Wade Wilkinson, with GJ Gardner of Wichita; his subcontractors and their technicians for building quality energy efficient homes. I enjoy being able to verify the quality of their work.

If you would like to see this home, it is currently in the Fall 2014, WABA Parade of Homes.  It is located in the Country Hollow Development.  Between Kellogg and Harry on 127th and East to Glen Hills Court, on the corner.  Find out also about the HERS Index earned by this home. It will save you operating costs on your Energy Bills.

Passive House Work in Wichita

In the last two weeks, two national groups that certify construction for Passive House Standards conducted their annual conferences.  PHIUS was held in Portland, OR; and PHI was held in Maine. Locally, I have completed the first of 3 planned Blower Door tests for a passive concept home under construction; discussed the planned construction with another builder to start later this year; and discussed passive building concepts with another builder planning his first homes next year.

PassivhausDarmstadtKranichstein-300The Passive House concept started in Germany, with construction starting in 1990 on several homes. In German, it is Passiv Haus,  PHI for Passiv Haus Institute.  The standards followed by this concept require an attention to detail in design and construction of the thermal enclosure.  Historically referred to as the envelope, the thermal enclosure involves the exterior bottom, sides and top of the structure.

  • Higher than commonly used levels of insulating material,
  • windows meeting specific standards and very
  • Effective work on air sealing
  • Attention to the Solar Orientation of the home to maximize the use of solar heat in the winter

PHIThis results in an extremely low energy bill.  How low? In the Wichita area, this would translate to an $88 – $110 annual natural gas bill, instead of $500 – $900 bills that I routinely see on Home Energy Audits.

The passive term comes from the idea of using insulation and construction techniques to create a significant energy savings instead of relying on fancy machinery to create that savings. Dr. Wolfgang Feist of Dahrmstat, Germany founded the Passiv Haus Institut in 1996.

Smith HouseThe passive house concept arrived in the US in 2003.  Katrin Klingenberg, a licensed architect in Germany, She built a home meeting these standards, 2 hours south of Chicago.

 

Most countries have a local organization that trains and certifies homes and commercial buildings to the Passive Standard. Yes, passive concepts apply to buildings other than homes. These groups train people to apply and measure the standards. They also review the reports on specific buildings and accept or deny actual certification for a specific building.

PHIUSIn the US, this organization has been known as PHIUS.  Passive House Institute, US. Ms Klingenberg has been the leading light of this group, which was founded in 2007.  There are some things in each country that differ from the original German model of Passiv Haus.

The experience of the professionals working with PHIUS in the US has resulted in some changes to how the concept is applied in the US. For example, the metric units used in the German (and most others in the world) have been translated to the Imperial units used in the US. The collaborative nature of US business groups has been essential to moving the passive concept from being used by a relative few to becoming a market force in the US.

Because these adaptations by PHIUS to the US market, were not acceptable to the original PHI, a divide between the approaches has occurred in the US.  It is mostly technical, and both groups agree the concept is still primary.  Effective building resulting in low energy use.

Some claims have been made that these concepts are two expensive for the US market. The original Passive House in Illinois was built at a 2003 cost of $94/ sf.  That is very favorable with current US construction costs. Since additional people are using the concept and the resulting products that manufacturers are producing, the mass production will bring some drop in costs.

If you wish to read more about the two national conferences for both the PHI and the PHIUS organizations that just finished, you may use these articles.

The 9th annual North American Passive House Conference (PHIUS)

Report from the Passive House Conference in Maine

I will keep you updated on activity in this area about Passive House building activity, as it progresses.  Three projects is a great start.  I’m glad that builders are willing to try new concepts and that home buyers are willing to step up and buy these homes.

In the introduction of this post, I mentioned a house under construction with the Passive House concept. I conducted the first of 3 Blower Door Tests last week.  This test was after the framing and exterior sheathing was completed.  Insulation, plumbing, electrical and trades had not started.  The second test will be in a few weeks after these trades have done their initial work and put holes in the enclosure.  Electric wires, plumbing, HVAC and other necessary conveniences of our lives will be installed in passive concept homes. The third test will be done at the end of construction.

The PHI/PHIUS standard for Air Infiltration as measured by the Blower Door Test is 0.60 –  The current 2012 recommended code requirement for this is 3.0 — Wichita/Sedgwick County does not have an energy code in place, but the Kansas City area does. They enforce a 5.0 standard.  Typical homes built from 1980 and prior are in a range of 10 – 38 from my testing.

The goal of the builder on this passive concept home was to reach 1.5 on this first test. Then using the Infrared Camera to find areas to caulk, and fixing the penetrations mentioned above, have the next test come in lower.

Blower Door62This test, actually came in at 0.62 —  almost the standard.  Much better than the expected 1.5 .   While the blower door was running, the Infrared found some places that could be fixed.  Dan, the carpenter, was right there with a caulking gun.  We also found some leakage with biometrics. A back of your hand that is wet, will show you extremely small amounts of air movement.  Most builders like to use expanding foam to seal the actual window to the rough opening.  We found some of these foamed openings were still leaking. Again the caulking gun was a good answer.

 

A Healthy Home Part 4 – Free of Combustion By-Products

This post is written as a conversation between a homeowner and myself as it could have occurred during a Home Energy Audit. It is actually the gathering together of several conversations on different audits over the past few years.

smoky fires

 

A Healthy Home is Free of Combustion By-Products

Homeowner: Oh!  You mean no Carbon Monoxide!  I have a  Carbon Monoxide Detector.  It has had some false alarms, but it has never found a problem.

The Energy Guy: OK!  Carbon Monoxide (CO) is one by product of combustion.  There are others.

Homeowner:   So, you mean the house must be all electric?

The Energy Guy: No, not necessarily.  An all electric home, might have a fire place, and an attached garage. Both are sources of CO and other byproducts of combustion. A healthy home will deal with all of these in some fashion.

Homeowner: What other things are you talking about besides CO?

rustDHWThe Energy Guy: The one I see the most of is moisture.  Many of the flue pipes I’ve seen have rusted from the moisture.  If you have a gas hot water heater, look at the top.  Is the top rusting, what about the flue pipe or the draft diverter? Moisture from open combustion appliances also increases the humidity in the home and adds unneeded work to your air conditioning unit, increasing the bill.

There are others, such as Nitrogen  Dioxide, and Sulphur Dioxide, and various particles of all sorts.

Homeowner:  So, those are like Carbon Dioxide?  Something that is just there?

The Energy Guy:  Yes!  They are just there, with two concerns.  First the Lung Association points out the health effects of Sulphur Dioxide include:

  • Wheezing, shortness of breath and chest tightness and other problems, especially during exercise or physical activity.
  • Continued exposure at high levels increases respiratory symptoms and reduces the ability of the lungs to function.
  • Short exposures to peak levels of SO2 in the air can make it difficult for people with asthma to breathe when they are active outdoors.

Health effects of Nitrogen dioxide include:

  • Increased inflammation of the airways
  • Worsened cough and wheezing
  • Reduced lung function
  • Increased asthma attacks
  • Greater likelihood of emergency department and hospital admissions
  • Increased susceptibility to respiratory infection, such as influenza

Homeowner: I’m pretty healthy, but you said ‘First!’

The Energy Guy:  The second is moisture. Moisture could be a high humidity situation, or moisture from the combustion that produced these dioxides and if you inhale some of them, or moisture in your nose and lungs. Here are the basic chemical equations for those interested.

Sulphur Dioxide plus Water ends up as Sulphuric Acid [SO2 + H20 ===> H2SO3 (sulphurous acid) SO3 + H20 ===> H2SO4 (sulphuric acid)]

acid_storageNitrogen Dioxide plus Water ends up as Nitric Acid [NO2 + H2O ===> HNO3 + NO]

Homeowner: But acid eats things up!

The Energy Guy:  Yes, it does. These acids start the rust process, I mentioned earlier. The other place you can look for rust is to look at the flue on the roof of some homes. If the coating is attacked by the acids, then rust occurs.

So How do I keep this stuff out of my home and away from my family?

co detectorThe Energy Guy:  First install some Carbon Monoxide Detectors.  If your furnace and water heater are in the basement, you need one down there.  You also need one near bedrooms.

Homeowner: OK!  I’ll get that one that works with my Nest!

The Energy Guy:  That will work for one.   The Nest Protect is like most CO detectors, it will alarm at the higher amounts of CO as required by the Underwriters Laboratory requirements.   These start at 70ppm of CO for an hour. Professional organizations such as ASHRAE and NIOSH list 35ppm as the level for technicians and others to stop work, turn off equipment and evacuate the building. A low level detector is important.

Low Level CO detectors do not meet the UL requirement because they alarm at lower levels, typically 20ppm.    15-20ppm CO levels have been found to impair judgement in people exposed for short periods of time.  The UL testing does not allow a CO detector to pass if it alarms below 30 ppm. Low level CO exposure can result in headaches and general malaise.  If you are exposed to low levels over a period of months or years the effect is unknown at this time.

Homeowner:  OK!  So I’ll get a low level detector also.  What else can I do.

The Energy Guy:  Do some careful air sealing between the garage and the house. You can add exhaust ventilation to your garage as recommended in the International Residential Code. Open the door before you start the car, and then immediately back out. More information about CO and the garage. Air sealing here and a simple closer on the door to the garage will help keep CO and other pollutants from the garage out of the house.

Inside the house, you can buy smart when you replace your water heater or furnace.  Buy sealed combustion units.  These are generally more efficient units, so they will save you some on your bill each month.

95Water Heaters can be sealed combustion, such as the demand models or a power vented unit. Either of these units can be identified with the use of PVC exhaust flue, instead of the metal flue needed by traditional units. They do not need the metal, because the exhaust is a lower temperature. This has a side effect of increased efficiency. The image to the right is the flue of at sealed combustion furnace.

Finally, think about your wood burning fireplace or your gas oven.  These also create the same problems.  Here a low level CO detector would be very valuable. Following the fireplace manufacturers instructions in keeping the glass door shut and having it checked regularly are important.  For a gas range, especially with a gas oven, install an exhaust fan that vents to the outside.

 

Some of this information came from the Maine Indoor Air Quality Council

Some of this information came from the American Lung Association

A Healthy Home — The first of this series

A Healthy Home Part 3 — Well Ventilated

Fresh AirA Healthy Home is well ventilated.  Everyone knows fresh air is important. This should be easy.  Well ventilated in more than just bringing in fresh air. The concepts are certainly easy, the details on the other hand take some thought and planning.  A new home ventilation strategy is fairly straight forward to design and implement. An existing home needs the input from the occupants and good analysis to address the problems. An effective ventilation strategy should address these issues in either new or existing homes.

  • Remove humidity, odors,, or significant problems from specific areas.
  • Remove stale, musty or other objectionable air.
  • Allow the occupants to choose fresh air sources that can be filtered or treated in other ways
  • Allow the occupants to choose to open windows when outside weather is appropriate
  • Allow the occupants to operate a system that can provide the amount of fresh air, to the appropriate places, in adequate amounts when needed
  • Provide fresh air when the outside air creates potential problems, such as Ragweed season or when other allergens are active
  • Provide air movement within the home, without the use of the expensive blower on the furnace or heat pump.
  • Allow minimal use of heating or cooling equipment during the shoulder seasons, when temperature changes are minimal, while keeping the home comfortable.

Billings QuoteHow much fresh air is needed?  Going back to the 1890’s, the number has been pegged at 30 CFM (cubic feet per minute) per person. This number was validated in a number of different studies and with the public health authorities in larger cities, dealing with large apartment buildings and recurring respiratory diseases.  I was pointed to the quote at the left by Allison Bailles. he located the original book on Google Books, page 20.

Beginning in the 1930s, research into changes in building techniques began to show the optimal number was closer to 15 CFM per person.  Some of the changes in construction included the increased use of forced air heating, moving from balloon framing to platform framing, increasing square footage, and the use of insulation in walls and attics. The formula changes from time to time and everyone has an opinion on details. The common point remains, fresh air is needed in every house.

Part of the Ventilation is removing air with a problem. Where is that?  Humidity is found in rooms that use hot water and basements.  Showers, tubs and cooking are the large sources of humidity.  The smells from food preparation and cooking can be very mouthwatering.  When the meal is finished and the refrigerator is full, the lingering smells become odors.  The answer is some spot ventilation in these areas. If your basement has a humidity problem, you can tackle that with a fitted sump pump cover to contain the humidity, and work to eliminate any water seepage.

vent fanSpot ventilation is a window that opens and an exhaust fan. The size of these fans is part of the formula that is specific to each home. The features of the fan are common to all homes.  It must be quiet. Builder grade fans are noisy. Noise in fans is measured in ‘Sones’. The Sone is a linear measurement of noise, compared to the decibels used by OSHA and others which is an exponential measurement.  Linear is better for quiet sounds, and decibels is better for loud noises. Fans should be less than 3 sones, and preferably less than 1 sone.  Reasonably priced fans are available that rate a 0.3 sones. A 1 sone fan is very quiet.

UnknownFans are certified for air flow and noise levels by the Home Ventilation Institute. HVI certification is very common and includes both the Sone rating and CFM rating.  When installing a fan, you must consider the duct losses that will occur in meeting the required air flow.   The rates for bathroom air flow  are 50 CFM, and 100 CFM for a kitchen.  Do not expect to buy a 50 CFM fan for a bathroom and connect it to 6 or 8 feet of duct work, and obtain 50 CFM.  I have measured 30 CFM routinely in these set ups.

Most people understand that various parts of their body are just a part of the whole.  If you start some type of therapy, there may be a side effect. Physical Therapy starts and you end up with some sore muscles, aha!  Side Effect!  Start a therapy for cancer and your hair may fall out, aha! Side Effect!  Your home works the same way.  Each part is just part of the whole. Change something, aha! What is the side effect?

House-System-imgAll of the items in the list above are part of the whole. For an existing home, some specifics of that house may indicate concentration on one or another of those areas.  A home built in the 1920’s will benefit from a different approach then a house built in the 1980’s.

A new home should have the ventilation system that meets the general points above.  The natural ventilation provided when windows and doors are opened, or the mechanical ventilation system that allows filtered and perhaps treated fresh air brought in from specific places and in specific amounts, allow the occupants to make the system work as they need.

 

This post is part of a Series on A Healthy Home

 

 

A Healthy House Part 1c: How Dry is Dry

rainIn Part 1a, we have looked at how your builder builds your home to keep water from the outside from damaging your home.  He used materials to shed the water and he lapped them over each other, from the roof peak and the shingles all the way down to the ground. And then directed the water away from the house, using gutters and sloping the landscape away from the house. Easy, quick and it looks nice.

In Part 1b, we looked at how your builder builds your home on the inside to keep water where you want it, and provide easy clean up when it does get out of the pipes, the sink, tub or shower.

BucketYou can think of this as bulk water.  You can see it, this is water that is usually measured in quarts or gallons, and it is responsible for 50 – 60 % of the water damage that occurs over time. The exact percentage depends on the source doing the figuring.  So why is there a Part 1c?   There is one remaining source of moisture in most homes.  Water Vapor.  Hard to see it, hard to measure it.  The damage water vapor causes is usually found to be very extensive.

If you have a roof leak, it usually ends up inside and you find it while it is relatively small. When it is fixed the damage is limited and fairly easy to fix.  Leaks from plumbing and over flowing sinks and tubs, is usually caught very fast. The surface is easy to clean up and many times contains the water.  Damage from these sources doesn’t really occur unless the water continues over time to get there.  It stays wet and is not allowed to dry out.

Flood type events are not really of concern here. When they happen, the homeowner is aware, his insurance may cover repairs and there are lots of contractors that will do the work. Generally, they have little to do with how the house was built.

teapotWater vapor is present in varying amounts in every home.  What is the relative humidity in the home?  40% – 25% – 65%?  That is water vapor in the air. We add to that from breathing, cooking, and hygiene activities, like showers and running hot water for various purposes.

How do we control this water vapor?

Spot ventilation.  This may be as simple as opening a window next to the stove where the pasta is boiling, or the tea pot is ready to pour. It may be using an exhaust fan over the stove to actually remove the water vapor from cooking out of the house. Same in the shower.

acWhen the heat and humidity arrive around here, in the summer, it is air-conditioning season. Most air conditioners will lower the temperature of the air and remove some of the humidity at the same time.  Somedays they do a great job, somedays the ac unit really has to work and it.  Occasionally, you will find a unit that makes the room fairly cold, and you just feel clammy.  Like you just walked in from 100° outside and you are wet all over. The trouble is, it doesn’t go away.  You keep feeling cold and clammy.

That is the first way that water vapor causes a problem with our homes, it makes us uncomfortable.

How does the water vapor move into the walls and attic to cause problems like the liquid or bulk water we looked at?  It has two ways to move.  Air Movement and Vapor Diffusion.

Vapor Diffusion involves moving a vapor, in this case water.  It involves temperature and pressure.  It also involves Math, lots of fancy math.  I know some math teachers that can run these numbers, and a couple of physicists here in Kansas.  I’m sure the characters on TV’s ‘Big Bang Theory’ could run the numbers.

Adding MachineThe good news is, we don’t have to run the numbers.  If you take a room in your home with the humidity at 40% and 70° –  you will find less than a gallon of actual water.  By the time all the numbers are done, the answer is:  Yes – Vapor Diffusion put some of that water vapor into the wall.  And we can test that the 7% moisture content of the drywall, studs and other parts of the wall, is now 7.5 or 8%.  Not much change.   If you have read much on this blog, you know I lower my blood pressure by turning wood, into bowls.  Anything less than 12% moisture content in wood is considered dry.

If the builder bought kiln dried lumber, and kept the rain off it, while the house was built, the wood is probably 8 – 9 % moisture content when the home is finished.  Kiln dried lumber is typically 6 – 8 %.  Moving from an enclosed type shed to the job site, wood will pick up a little moisture.

What about air movement and water vapor?  That is the one to take care of.  Uncontrolled air movement takes the water vapor right along with it. When that vapor comes in contact with a surface that is below the current dew point, it will condense and the liquid wets the material.  We know that energy savings is easy to obtain with air sealing.  So fixing the air leaks is good for stopping the water vapor from making our house wet also.   How much?  This graphic from the guys at Building Science Corporation shows how much.

Air_Vapor

This post is part of a series of posts on A Healthy Home.

A Healthy Home Part 1a: How Dry is Dry? –

rain

Water in a house, Good Thing, Bad Thing?  Some places like the sink you expect to find water. Other places like the floor, water is a problem. Builders work hard to build a home so water says where it belongs.

RoofLook at the way the roof is installed!  The shingles are layered from bottom to top. They are also lapped over each layer. So water, will drain down the roof and off.  If water gets up under a shingle, the roofing crew has done some other things like roofing felt, metal valleys and flashing to do the job.

Look at the water run off the overhang in the top picture.  When it rains most of the water hits the roof, the overhang changes how much strikes the wall. Matt Risinger, a home builder in Austin, TX, tweeted this graphic recently.

Overhang

Do you think Matt builds homes with short overhangs?

SidingThe layers on the roof are repeated for the same purpose for other areas of the house. They work the same way. Some are installed the same way, some are installed differently. Other areas of your home have a different experience with water.

Tyvek TopThe outer layer of a wall, the siding, like the shingles, are lapped. The next layer behind the lapped siding is usually known as house wrap. That’s the white covering you see on many new homes, before the siding is installed. Technically, the term for this is ‘Weather Resistant Barrier’ or WRB. Just as the roofing felt helps keep water outside on the roof, the WRB helps keep water outside on walls.

Just as the roofing felt, shingles, and siding are lapped; house wrap should also be lapped, each new layer draining onto the top of the layer below. The directions call for a 6 inch lap, and then tape. The tape is used on house wrap and not roofing felt, because it is a different material, cap nails should be used.

IMG_7672How does the home buyer know the house wrap is right? It passed a code inspection, didn’t it?  This image shows damaged house wrap. Is it taped and lapped correctly? Are the fasteners used according to the manufacturer’s directions.

Do these problems mean that house wrap is bad.  Certainly not!  House wrap is a great product when installed correctly.  It will do the job it is designed to do; act as a Weather Resistant Barrier. It will then, direct water back outside and not allow it into the wall.

DetailWindows and doors need an opening in the wall. These openings must be detailed correctly or water will enter. These details involve flashings, and tapes. How the window is made, with nailing flanges, with foldable nailing flanges or field installed nailing flanges must be considered. Here we see a tape used to seal the nailing flange to the house wrap.

Is house wrap the only type of WRB used?  No!  It is the most widely used in this area. The others will be covered in a future post.

Now if the roof and the wall properly shed water, and they guide any water that gets inside back out, we get to the ground. At this point the water should be directed away from the house.  Gutters and down spouts do a great job when the ground slopes away. Recommended slopes are 1/4 inch per foot for hard surfaces like concrete, and 1/2 inch per foot for other surfaces. Local codes may require more, or a builder preference may result in a larger grade.

damp_proofingThe basement or foundation walls should be damp-proofed on the outside. This is the black spray applied to the concrete. A tile drain system is installed around the exterior of the foundation and tied into a sump to be pumped out of the home.

 

If these or other equivalent measures are built into a new home, the builder is doing the job right. They are all in the building code. The issue is not what material, the issue is quality of workmanship.

This post is part of a series of posts on A Healthy Home.